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Procedural Abstraction

• When programs get large, certain disciplines of structuring
need to be followed rigorously. Otherwise, the programs 
become complex, confusing and hard to debug.

• In your first programming course you learned the benefits 
of procedural abstraction (διαδικαστική αφαίρεση). When 
we organize a sequence of instructions into a function 
F(x1, …, xn), we have a named unit of action.

• When we later on use this function F, we only need to 
know what the function does, not how it does it.
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Procedural Abstraction (cont’d)

• Separating the what from the how is an act of 
abstraction (αφαίρεση). It provides two 
benefits:

– Ease of use

– Ease of modification
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Information Hiding

• In your first programming course, you have also 
learned the benefits of having locally defined 
variables.

• This is an instance of information hiding
(απόκρυψη πληροφορίας).

• It has the advantage that local variables do not 
interfere with identically named variables outside 
the function.

• Abstraction and information hiding in a 
programming language are greatly enhanced with 
the concept of module (ενότητα).
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Modules and Abstract Datatypes

• A module is a unit of organization of a software system that 
packages together a collection of entities (such as data and 
operations) and that carefully controls what external users of the 
module can see and use.

• Modules have ways of hiding things inside their boundaries to 
prevent external users from accessing them. This is called 
information hiding.

• Abstract data types (αφαιρετικοί τύποι δεδομένων, ADTs) are 
collections of objects and operations that present well defined 
interfaces (διεπαφές) to their users, meanwhile hiding the way 
they are represented in terms of lower-level representations.

• Abstract data types are theoretical concepts. Modules can be used 
to implement abstract data types.
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Modules (cont’d)

• Many modern programming languages offer  
modules that have the following important 
features:
– They provide a way of grouping together related 

data and operations.

– They provide clean, well-defined interfaces to 
users of their services.

– They hide internal details of operation to prevent 
interference.

– They can be separately compiled.
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Modules (cont’d)

• Modules are an important tool for  “dividing 
and conquering” a large software task by 
combining separate components that interact 
cleanly.

• They ease software maintenance (συντήρηση 
λογισμικού) by allowing changes to be made 
locally.
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Encapsulation

• When we have features like modules in 
programming languages, we use the term 
encapsulation (ενθυλάκωση, the hidden local 
entities are encapsulated and a module is a 
capsule).
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Modules in C

• C does not have an explicit concept of module.

• But by careful use of header files, we can arrange for 
separately compiled C program files to have the above 
four properties of modules:
– They provide a way of grouping together related data and 

operations.
– They provide clean, well-defined interfaces to users of 

their services.
– They hide internal details of operation to prevent 

interference.
– They can be separately compiled.
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Modules in Object-Oriented Languages

• In object-oriented languages like C++, Java and 
Python, we also have other constructs that help 
us to implement abstract data types like classes, 
interfaces, packages and modules.

• As an example, in Python, once we write a 
module, we can export classes and functions so 
that they can be used by other programs that 
import the module. What we don’t export 
remains hidden from the programs using the 
module.
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Modules in C (cont’d)

• A C module M consists of two files MInterface.h
and MImplementation.c that are organized as 
follows.

• The file Minterface.h:

/*------<the text for the file MInterface.h starts here>---------- */

(declarations of entities visible to external users of the module)

/*--------------<end of file MInterface.h>-------------------------*/
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Modules in C (cont’d)

• The file MImplementation.c:

/*-------<the text for the file Mimplementation.c starts here>------*/

#include <stdio.h>

#include “MInterface.h”

(declarations of entities private to the module plus the)

(complete declarations and implementations of functions)

(exposed by the module)

/*---------------<end of file MImplementation.c>--------------------*/
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The Interface file

• MInterface.h is the interface file.

• It declares all the entities in the module that are visible
to (and therefore usable by) the external users of the 
module.

• Such visible entities include constants, typedefs, 
variables and functions. Only the prototype of each 
visible function is given (and only the argument types, 
not the argument names).

• The book by Standish recommends that declarations of 
functions in the interface file are “extern” declarations. 
This is not necessary, so we will not follow it.
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The Implementation File

• MImplementation.c is the implementation
file.

• It contains all the private entities in the module, 
that are not visible to the outside.

• It contains the full declarations and 
implementations of functions whose prototypes 
have been given in the interface file.

• It includes (via #include) the user interface 
file.
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The Main Program

• A main program (client program) that uses two 
modules A and B is organized as follows:

#include <stdio.h>

#include “ModuleAInterface.h”

#include “ModuleBInterface.h”

(declarations of entities used by the main program)

int main(void)

{

(statements to execute in the main program)

}
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Separate Compilation

• We can compile the module and the client 
program separately:

gcc -c MImplementation.c -o M.o

gcc -c ClientProgram.c -o ClientProgram.o

gcc M.o ClientProgram.o –o ClientProgram.exe

With the first two commands, we compile the C files to 
produce object files. Then, the object files are linked to 
produce the final executable.

• In a similar way, we can build and use libraries in 
C.
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Priority Queues – An Abstract Data 
Type

• A priority queue (ουρά προτεραιότητας) is a 
container that holds some prioritized items. 
For example, a list of jobs with a deadline for 
processing each one of them.

• When we remove an item from a priority 
queue, we always get the item with highest 
priority.
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Defining the ADT Priority Queue

• A priority queue is a finite collection of items for 
which the following operations are defined:
– Initialize the priority queue, PQ, to the empty priority 

queue.

– Determine whether or not the priority queue, PQ, is 
empty.

– Determine whether or not the priority queue, PQ, is 
full.

– Insert a new item, X, into the priority queue, PQ.

– If PQ is non-empty, remove from PQ an item X of 
highest priority in PQ.
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A Priority Queue Interface File

/* this is the file PQInterface.h */

#include “PQTypes.h”     

/* defines types PQItem and PriorityQueue */

void Initialize (PriorityQueue *);

int Empty (PriorityQueue *);

int Full (PriorityQueue *);

void Insert (PQItem, PriorityQueue *);

PQItem Remove (PriorityQueue *);
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Sorting Using a Priority Queue

• Let us now define an array A to hold ten items of type PQItem, 
where PQItems have been defined to be integer values, such that 
bigger integers have greater priority than smaller ones:

typedef int PQItem;

typedef PQItem SortingArray[10];

SortingArray A;

• We can now use a priority queue to sort the elements of array A in 
increasing order. 

• We can successfully use the ADT priority queue whose interface 
was given earlier without having to know any details of its 
implementation.
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Sorting Using a Priority Queue (cont’d)

/* this is the main program */

#include <stdio.h>

#include “PQInterface.h”

typedef PQItem SortingArray[MAXCOUNT];

/* Note: MAXCOUNT is 10 */

void PriorityQueueSort(SortingArray A)

{

int i;

PriorityQueue PQ;

Initialize(&PQ);

for (i=0; i<MAXCOUNT; ++i) Insert(A[i], &PQ);

for (i=MAXCOUNT-1; i>=0; --i) A[i]=Remove(&PQ);

}
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Sorting Using a Priority Queue (cont’d)

int SquareOf(int x)

{

return x*x;

}

int main(void)

{

int i; SortingArray A;

for (i=0; i<10; ++i){

A[i]=SquareOf(3*i-13);

printf(“%d ”,A[i]);

}

printf(“\n”);

PriorityQueueSort(A);

for (i=0; i<10; ++i) {

printf(“%d ”,A[i]);

}

printf(“\n”);

return 0;

}
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Implementations of Priority Queues

• We will present two implementations of a 
priority queue:

– Using sorted linked lists

– Using unsorted arrays
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The Priority Queue Data Types

In the sorted linked list case, the file PQTypes.h can be defined as 
follows:

#define MAXCOUNT 10

typedef int PQItem;

typedef struct PQNodeTag {

PQItem NodeItem;

struct PQNodeTag *Link;

} PQListNode;

typedef struct {

int Count;

PQListNode *ItemList;

} PriorityQueue;
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Notation

• In the diagrams in this part of the course, we 
will write:

– Datatypes in green color.

– Variables, structures and members of structures in 
black color.
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A Priority Queue Implemented by a 
Sorted Linked List
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A Priority Queue Implemented by a 
Sorted Linked List
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Implementing Priority Queues Using 
Sorted Linked Lists

/* This is the file PQImplementation.c */

#include <stdio.h>

#include <stdlib.h>

#include “PQInterface.h”

/* Now we give all the details of the functions */

/* declared in the interface file together with */

/* local private functions.                     */

void Initialize(PriorityQueue *PQ)

{

PQ->Count=0;

PQ->ItemList=NULL;

}
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Implementing Priority Queues Using 
Sorted Linked Lists (cont’d)

int Empty(PriorityQueue *PQ)

{ 

return(PQ->Count==0);

}

int Full(PriorityQueue *PQ)

{

return(PQ->Count==MAXCOUNT);

}
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Implementing Priority Queues Using 
Sorted Linked Lists (cont’d)

PQListNode *SortedInsert(PQItem Item, PQListNode *P)

{ 

PQListNode *N;

if ((P==NULL)||(Item >=P->NodeItem)){

N=(PQListNode *)malloc(sizeof(PQListNode));

N->NodeItem=Item;

N->Link=P;

return(N);

} else {

P->Link=SortedInsert(Item, P->Link);

return(P);

}

}
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Implementing Priority Queues Using 
Sorted Linked Lists (cont’d)

void Insert(PQItem Item, PriorityQueue *PQ)

{

if (!Full(PQ)){

PQ->Count++;

PQ->ItemList=SortedInsert(Item, PQ->ItemList);

}

}
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Functions Insert and 
SortedInsert

• The function Insert keeps the elements of the list in 
decreasing order (the first item has the highest 
priority).

• The function Insert calls SortedInsert for doing 
the actual insertion.

• SortedInsert has three cases to consider:
– If the ItemList of PQ is empty.
– If the new item has priority greater than or equal the 

priority of the first item on ItemList.
– If the new item has priority less than that of the first item 

on ItemList. In this case the function is called 
recursively on the tail of the list.
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Implementing Priority Queues Using 
Sorted Linked Lists (cont’d)

PQItem Remove(PriorityQueue *PQ)

{

PQItem temp;

if (!Empty(PQ)){

temp=PQ->ItemList->NodeItem;

PQ->ItemList=PQ->ItemList->Link;

PQ->Count--;

return(temp);

}

}
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Question

• What is missing in the previous function?

Data Structures and Programming 
Techniques

34



Answer

• We need to free the space that became 
available.

• Do it as an exercise!
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Function Remove

• The function Remove simply deletes the item 
in the first node of the linked list representing 
PQ (this is the item with highest priority) and 
returns the value of its field NodeItem.
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Question

• Do we need element Count in the struct 
PriorityQueue and constant MAXCOUNT
in the PQTypes.h file?
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Answer

• We could avoid the use of Count by using NULL
as the value of member ItemList of structure 
PriorityQueue for empty queues.

• But checking that Count==MAXCOUNT is useful 
for knowing whether the priority queue is full, 
and we cannot get this in any other way.

• Count can also tell us how many elements we 
have in the priority queue without having to 
search.
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The Priority Queue Data Types

In the unsorted array case, the file PQTypes.h can be 
defined as follows:

#define MAXCOUNT 10

typedef int PQItem;

typedef PQItem PQArray[MAXCOUNT];

typedef struct {

int Count;

PQArray ItemArray;

} PriorityQueue;
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A Priority Queue Implemented by an 
Unsorted Array
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Implementing Priority Queues Using 
Unsorted Arrays

/* This is the file PQImplementation.c */

#include <stdio.h>

#include “PQInterface.h”

/* Now we give all the details of the functions */

/* declared in the interface file together with */

/* local private functions.                     */

void Initialize(PriorityQueue *PQ)

{

PQ->Count=0;

}
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Implementing Priority Queues Using 
Unsorted Arrays (cont’d)

int Empty(PriorityQueue *PQ)

{ 

return(PQ->Count==0);

}

int Full(PriorityQueue *PQ)

{

return(PQ->Count==MAXCOUNT);

}
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Implementing Priority Queues Using 
Unsorted Arrays (cont’d)

void Insert(PQItem Item, PriorityQueue *PQ)

{ 

if (!Full(PQ)) {

PQ->ItemArray[PQ->Count]=Item;

PQ->Count++;

}

}
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Function Insert

• The function Insert simply appends the 
new item to the end of array ItemArray of 
PQ.
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Implementing Priority Queues Using 
Unsorted Arrays (cont’d)

PQItem Remove(PriorityQueue *PQ)

{ 

int i;

int MaxIndex;

PQItem MaxItem;

if (!Empty(PQ)){

MaxItem=PQ->ItemArray[0];

MaxIndex=0;

for (i=1; i<PQ->Count; ++i){

if (PQ->ItemArray[i] > MaxItem){

MaxItem=PQ->ItemArray[i];

MaxIndex=i;

}

}

PQ->Count--;

PQ->ItemArray[MaxIndex]=PQ->ItemArray[PQ->Count];

return(MaxItem);

}

}
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Function Remove

• In the function Remove, we first find the 
item with highest priority. Then, we save it in a 
temporary variable (MaxItem), we delete it 
from the array ItemArray and move the 
last item of the array to its position. Then, we 
return the item of the highest priority. 
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Interface Header Files

• Note that the module interface header file 
PQInterface.h is included in two 
important but distinct places:

– At the beginning of the implementation files that 
define the hidden representation of the externally 
accessed module services.

– At the beginning of programs that need to gain 
access to the external module services defined in 
the interface file.
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Separate Compilation

• We can compile the module and the client 
program separately:

gcc -c PQImplementation.c -o PQ.o

gcc -c sorting.c -o sorting.o

gcc PQ.o sorting.o –o program.exe

With the first two commands, we compile the C files 
to produce object files. Then, the object files are 
linked to produce the final executable.
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Information Hiding Revisited

• Let us revisit the sorting program we wrote earlier and 
consider the new printf statement.

#include <stdio.h>

#include “PQInterface.h”

typedef PQItem SortingArray[MAXCOUNT];

/* Note: MAXCOUNT is 10 */

void PriorityQueueSort(SortingArray A)

{

int i;

PriorityQueue PQ;

Initialize(&PQ);

for (i=0; i<MAXCOUNT; ++i) Insert(A[i], &PQ);

printf(“The queue contains %d elements\n”,PQ.Count);

for (i=MAXCOUNT-1; i>=0; --i) A[i]=Remove(&PQ);

}
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Information Hiding Revisited (cont’d)

• This printf statement accesses the Count
field of the priority queue PQ. Therefore, the 
previous module organization has not 
achieved information hiding as nicely as we 
would want it.

• We can live with that deficiency or try to 
address it. How?
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Another Example: Complex Number 
Arithmetic

• A complex number (μιγαδικός αριθμός) is an expression 𝑎 + 𝑏𝑖
where 𝑎 and 𝑏 are real numbers.

• 𝑎 is called the real part (πραγματικό μέρος) and 𝑏 the imaginary 
part (φανταστικό μέρος).

• 𝑖 = −1 is the imaginary unit (φανταστική μονάδα). It follows 
that 𝑖2 = −1.

• To multiply complex numbers, we follow the usual algebraic rules.
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Examples

• 𝑎 + 𝑏𝑖 𝑐 + 𝑑𝑖 = 𝑎𝑐 + 𝑏𝑐𝑖 + 𝑎𝑑𝑖 + 𝑏𝑑𝑖2 =
𝑎𝑐 − 𝑏𝑑 + 𝑎𝑑 + 𝑏𝑐 𝑖

• 1 − 𝑖 1 − 𝑖 = 1 − 𝑖 − 𝑖 + 𝑖2 = −2𝑖

• (1 + 𝑖)4= 4𝑖2 = −4

• (1 + 𝑖)8= 16

• Dividing the two parts of the above equation 

by 16 = ( 2)8, we find that (
1

2
+

𝑖

2
)8= 1.
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Applications

• Many branches of pure and applied mathematics

• Physics

• Fluid dynamics

• Signal processing (you have the course “Signals 
and Systems” in the 3rd semester!).

• Control theory

• Quantum mechanics

• Relativity
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Complex Roots of Unity

• In general, there are many complex numbers that 
evaluate to 1 when raised to a power. These are the 
complex roots of unity (μιγαδικές ρίζες της μονάδας).

• For each 𝑁, there are exactly 𝑁 complex numbers 𝑧
such that 𝑧𝑁 = 1.

• The numbers cos(
2𝜋𝑘

𝑁
) + 𝑖 sin(

2𝜋𝑘

𝑁
) for 𝑘 =

0, 1,⋯ ,𝑁 − 1 can be easily shown to have this 
property.

• Let us now write a program that computes and outputs 
these numbers for a given 𝑁.
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An ADT for Complex Numbers: the 
Interface

/* This is the file COMPLEX.h */

typedef struct complex *Complex;

Complex COMPLEXinit(float, float);  

float Re(Complex);  

float Im(Complex);

Complex COMPLEXmult(Complex, Complex);
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Notes

• The interface on the previous slide provides 
clients with handles (λαβές) to complex 
number objects but does not give any 
information about the representation. 

• The representation is a struct that is not 
specified except for its tag name.
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Handles

• We use the term handle (λαβή) to describe a 
reference to an abstract object.

• Our goal is to give client programs handles to 
abstract objects that can be used in assignment 
statements and as arguments and return values 
of functions in the same way as built-in data 
types, while hiding the representation of objects 
from the client program.
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Complex Numbers ADT 
Implementation

/* This is the file CImplementation.c */

#include <stdlib.h>

#include "COMPLEX.h"

struct complex { float Re; float Im; };

Complex COMPLEXinit(float Re, float Im)  

{ Complex t = malloc(sizeof *t);    

t->Re = Re; t->Im = Im;    

return t;  

}

float Re(Complex z)  

{ return z->Re; }

float Im(Complex z)  

{ return z->Im; }

Complex COMPLEXmult(Complex a, Complex b)  

{    return COMPLEXinit(Re(a)*Re(b) - Im(a)*Im(b), Re(a)*Im(b) + Im(a)*Re(b));  

}
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Notes

• The implementation of the interface in the 
previous program includes the definition of 
structure complex (which is hidden from the 
clients) as well as the implementation of the 
functions provided by the interface.

• Objects are pointers to structures, so we 
dereference the pointer to refer to the fields.

Data Structures and Programming 
Techniques

59



Client Program

/* Computes the N complex roots of unity for given N */

/* This is file roots-of-unity.c */

#include <stdio.h>

#include <math.h>

#include "COMPLEX.h"

#define PI 3.141592625

main(int argc, char *argv[])  

{ 

int i, j, N = atoi(argv[1]);

Complex t, x;    

printf("%dth complex roots of unity\n", N);    

for (i = 0; i < N; i++)      

{ 

float r = 2.0*PI*i/N;

t = COMPLEXinit(cos(r), sin(r));           

printf("%2d %6.3f %6.3f ", i, Re(t), Im(t));        

for (x = t, j = 0; j < N-1; j++)          

x = COMPLEXmult(t, x);

printf("%6.3f %6.3f\n", Re(x), Im(x));

} 

}
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Notes

• For an input number, the client program 
outputs the powers of unity up to that 
number, one by one, together with a 
verification that they are indeed such powers. 
To verify this, raising to a power is 
implemented by multiplication.
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Notes

• In this case, we can see that the exact 
representation of a complex number is hidden 
from the client program.

• The client program can refer to the real and 
the imaginary part of a number only by using 
the functions Re and Im provided by the 
interface.
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Command Line Arguments

• argc (argument count) is the number of 
command line arguments.

• argv (argument vector) is pointer to an array of 
character strings that contain the arguments, one 
per string.

• By convention, argv[0] is the name by which 
the program was invoked so argc is at least 1.

• In the previous program argv[1] contains the 
value of N.
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Separate Compilation

• We compile the module and the client program 
separately:

gcc -c CImplementation.c -o CI.o

gcc -c roots-of-unity.c -o roots-of-unity.o

gcc CI.o roots-of-unity.o –o program.exe -lm

With the first two commands we compile the C files to 
produce object files. Then the object files are linked to 
produce the final executable. Notice that we have to use 
the option –lm to link the math library.
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Exercise

• Revisit the ADT priority queue and define a 
better interface and its implementation so 
that we have information hiding.
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Readings

• T. A. Standish. Data Structures, Algorithms and Software 
Principles in C.
Chapter 4.

The code that we presented, and which does not do
good information hiding is from the book by Standish.

• Robert Sedgewick. Αλγόριθμοι σε C. 
Κεφ. 4

The code that we presented, and which does good
information hiding is from the book by Sedgewick.
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